publications

Conference and workshop papers listed in reversed chronological order. * denotes equal contribution

2024

  1. ICML
    Out of the Ordinary: Robust Regression by Spectral Adaptation
    Benjamin Eyre, Elliot Creager, David Madras, Vardan Papyan, and Richard Zemel
    In Proceedings of the 41st International Conference on Machine Learning 2024
  2. ICML
    Remembering to Be Fair: Non-Markovian Fairness in Sequential Decision Making
    Parand A. Alamdari, Toryn Q. Klassen, Elliot Creager, and Sheila A. Mcilraith
    In Proceedings of the 41st International Conference on Machine Learning Jul 2024

2023

  1. Thesis
    Robust Machine Learning by Transforming and Augmenting Imperfect Training Data
    Elliot Creager
    Jul 2023
  2. ICCV
    SURFSUP: Learning Fluid Simulation for Novel Surfaces
    Arjun Mani, Ishaan Preetam Chandratreya, Elliot Creager, Carl Vondrick, and Richard Zemel
    In International Conference on Computer Vision Oct 2023

2022

  1. NeurIPS
    MoCoDA: Model-based Counterfactual Data Augmentation
    Silviu Pitis, Elliot Creager, Ajay Mandlekar, and Animesh Garg
    In Advances in Neural Information Processing Systems Nov 2022
  2. ICML Workshops
    Towards Environment-Invariant Representation Learning for Robust Task Transfer
    Benjamin Eyre, Richard Zemel, and Elliot Creager
    In ICML Workshop on Spurious Correlation, Invariance, and Stability Jul 2022

2021

  1. ICML
    Environment Inference for Invariant Learning
    Elliot Creager, Joern-Henrik Jacobsen, and Richard Zemel
    In Proceedings of the 38th International Conference on Machine Learning Jul 2021
  2. ICML (Oral)
    On Disentangled Representations Learned from Correlated Data
    Frederik Träuble, Elliot Creager, Niki Kilbertus, Francesco Locatello, Andrea Dittadi, Anirudh Goyal, Bernhard Schölkopf, and Stefan Bauer
    In Proceedings of the 38th International Conference on Machine Learning Jul 2021
  3. ICML Workshops
    Measuring User Recourse in a Dynamic Recommender System
    Dilys Dickson, and Elliot Creager
    In ICML Workshop on Algorithmic Recourse Jul 2021
  4. ICML Workshops
    Online Algorithmic Recourse by Collective Action
    Elliot Creager, and Richard Zemel
    In ICML Workshop on Algorithmic Recourse Jul 2021

2020

  1. NeurIPS
    Counterfactual Data Augmentation using Locally Factored Dynamics
    Silviu Pitis, Elliot Creager, and Animesh Garg
    In Advances in Neural Information Processing Systems Dec 2020
  2. NeurIPS Workshops
    Fairness and Robustness in Invariant Learning: A Case Study in Toxicity Classification
    Robert Adragna, Elliot Creager, David Madras, and Richard Zemel
    In NeurIPS 2020 Workshop on Fairness Through the Lens of Causality Dec 2020
  3. ICML
    Causal Modeling for Fairness In Dynamical Systems
    Elliot Creager, David Madras, Toniann Pitassi, and Richard Zemel
    In Proceedings of the 37th International Conference on Machine Learning Jul 2020
  4. ICML
    Optimizing Long-term Social Welfare in Recommender Systems: A Constrained Matching Approach
    Martin Mladenov, Elliot Creager, Omer Ben-Porat, Kevin Swersky, Richard Zemel, and Craig Boutilier
    In Proceedings of the 37th International Conference on Machine Learning Jul 2020

2019

  1. ICML
    Flexibly Fair Representation Learning by Disentanglement
    Elliot Creager, David Madras, Joern-Henrik Jacobsen, Marissa Weis, Kevin Swersky, Toniann Pitassi, and Richard Zemel
    In Proceedings of the 36th International Conference on Machine Learning Jun 2019
  2. ICLR
    Explaining Image Classifiers by Counterfactual Generation
    Chun-Hao Chang, Elliot Creager, Anna Goldenberg, and David Duvenaud
    In International Conference on Learning Representations May 2019
  3. ACM-FAccT
    Fairness Through Causal Awareness: Learning Latent-Variable Models for Biased Data
    David Madras, Elliot Creager, Toniann Pitassi, and Richard Zemel
    In ACM Conference on Fairness, Accountability, and Transparency Jan 2019

2018

  1. ICML
    Learning Adversarially Fair and Transferable Representations
    David Madras*, Elliot Creager*, Toniann Pitassi, and Richard Zemel
    In Proceedings of the 35th International Conference on Machine Learning Jul 2018
  2. ICLR Workshops
    Gradient-Based Optimization Of Neural Network Architecture
    Will Grathwohl*, Elliot Creager*, Seyed Kamyar Seyed Ghasemipour*, and Richard Zemel
    In ICLR (Workshop Track) Apr 2018

2016

  1. ISMIR
    Nonnegative Tensor Factorization with Frequency Modulation Cues for Blind Audio Source Separation
    Elliot Creager, Noah D. Stein, Roland Badeau, and Philippe Depalle
    In 17th International Society for Music Information Retrieval Conference Aug 2016

2015

  1. Thesis
    Musical Source Separation by Coherent Frequency Modulation Cues
    Elliot Creager
    Aug 2015